
Robox Motion control Documentation
Release 1.0.0

Abed

Aug 17, 2018

RDE

1 Robox S.p.A. 1
1.1 Documentation . 2

i

ii

CHAPTER 1

Robox S.p.A.

Robox a company started in 1975, designs and manufatures electronic controllers, programming languages, develop-
ment environments for robotics and motion control systems.

Its broad range of products permit to deal with any applications, from the simplest ones (one or two controlled axes),
to the most sophisticated ones (dozens of controlled axes) thanks to the availability of architectures which can be
“modular”, “compact” or even integrated in brushless drives. Innovation and quality have been Robox’s main goals
since the very beginning.

Innovation has always been pursued keeping in mind the global reliability (present and future) of the product.

Quality has always been ensured by appropriate design choices and an accurate selection of materials. The respect for
cogency and the continous improvement of the Quality Management System ensure the achievement of the mentioned
objectives

Robox product catalog contain complete informations about Robox controllers, drives, HMI, softwares and
packages and libaries (G-code, Robot kinematics, PLCopen, etc.). Download and check the catalog before going on
with this documentation.

Note: The purpose of this document is to show the use of ROBOX products. It is a kind of tutorial. Even if a lot of
examples deal with the basics, the purpose of this tutorial is not to teach how to use Microsoft windows neither how
to learn to program from the begining. Previous knowlodge of the basics of any programming language (know how to

1

http://www.robox.it

Robox Motion control Documentation, Release 1.0.0

write a simple program, e.g. 10 lines of instructions) and the use of Linux or Windows operating systems (changing
ip address) is assumed.

Note: The appendix Fundamental of automation cover the basics and principles of industrial controllers (PLC),
sensors and actuators.

Note: Obvious steps are not listed in the tutorial. e.g. when we say connect the controller to the computer it si obvious
that you have to power it on, plug the ethernet cable I don’t know where, etc. Otherwise I encourge you to watch The
Lego Movie

1.1 Documentation

This documentation will show the use of Robox follwing products:

• RP1, RP2 : Robox compact controllers

• RDE : Robox Development Environment

• RDT : Robox Display tools (HMI)

• IMD : Robox Integrated Drive

1.1.1 Overview

Robox RP1 and RP2 are 2 compact motion controllers. They can be programmed in Ladder, in R3 language (Robox
Strucuted text) and in C++. The IDE is called RDE (Robox Integrated Environment).

In this part we will see Robox IDE for motion control called RDE, RTE that is the real-time operating system of Robox
and the commissioning of AGV using its already existing software written in R3 and Object block (C language).

Overview

Compact Controllers

Contoller programs are stored on memory card. RP1 use a compact flash memory and RP2 use a microsd memory.
Robox realtime operating system called RTE usually is present in the memory card in the folder /f@. If not present
on the memory card the binary file, rte_platform_name_version.bin, can be downloaded from Robox website. The
memory is provided by Robox together with the licence, present in the folder KEY, and the last version of RTE.

Note: ppc-ge is for RP1, arm-a9 is for RP2. RP1 MCU is a PowerPC freescale. RP2 MCU is an Intel ARM9 dual
core

For technical specification, CAD and electrical drawings check Robox website.

On the website you can find other Robox controllers.

2 Chapter 1. Robox S.p.A.

http://www.robox.it
http://www.robox.it/en-US/showpages.php?idpag=SHOWCASE
http://www.robox.it/en-US/showprod.php?idpro=AS1017.004
http://www.robox.it/en-US/showcateg.php?idcap=DEVE
http://www.robox.it/en-US/showcateg.php?idcap=DEVE
http://www.robox.it/en-US/showcateg.php?idcap=INTDRV.P
http://www.robox.it
http://delivery.robox.it/firmware/rte/
http://www.robox.it
http://www.robox.it

Robox Motion control Documentation, Release 1.0.0

Fig. 1: RP1: 8 Genral purpose tasks, 32 RULEs (realtime motion tasks)
Up to 32 interpolated axes driven by Ethercat or CanOpen. Compact flash, RS232, RS485, Profibus, Ethercat, 2 CanOpen,

Ethernet/IP, Integrated IO, Native interface to Pheonix Axioline IO

1.1. Documentation 3

Robox Motion control Documentation, Release 1.0.0

Fig. 2: RP2: 8 Genral purpose tasks, 32 RULEs (realtime motion tasks)
Up to 250 interpolated axes driven by Ethercat or CanOpen. MicroSd, RS232, Ethercat, CanOpen, Ethernet/IP, ProfiNEt, Native

interface to Pheonix Axioline IO, 2 USB type A, 1 USB port type B, WiFi (internal webserver)

4 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Controller program

Robox realtime operating system RTE, basically can execute until 8 tasks in time sharing (round robin) and one high
priority periodic task called Rule. The maximum (recommended) frequency of the Rule is 200Hz(5ms) for RP1 and
1000Hz (1ms) for RP2.

Taks usually are used for general purpose control like a PLC, and the RULE is used for motion control. RTE can
execute until 32 Rules.

Compared to Siemens PLC, tasks can be like OB1. So we can have until 8 OB1 executed in parallel. And Rules can
be compared to an interrupt OB e.g. OB35, fixed time interrupt.

Note: Task1 is executed automatically by RTE. Taks1 have to call others task and rules in the initialization phase.
This can be done with the instruction mt_en(task_number)

In the following images show how tasks are executed in principle. Schedulars differ from one operating system to
another.

Note: More about RTE scheduler, Multitasking and RULEs will be discussed in the chapter related to motion control.

Controllers memory

Robox controllers have a memory card where RTE (Real Time Extended) and RPE (Robot Path Executor) binary file
are saved, together with the program files, configuration files, etc.

They contain also a retentive memory, which dimension depend on the controller type. Non volatile registers (nvr,
nvrr, nvsr) and retentive user defined structures are retained in this memory. You can make a bakup of the values of
the retentive memory and save them into a formatted text file usally with extension .stp.

The dimesion of each type of register can be determined in the project configuration, as we will see in RDE chapter.
Remember that registers are indexes of memory areas, like Merkers in Siemens PLCs, and can be Integer (nvr), Real
(nvrr) and String (nvsr). Robox controllers have also the same types of registers but volatiles (r, rr, sr).

Safety

1.1.2 RDE - Robox Development Environment

First step

In order to getting started with the controller, we need a memory card where we have to copy RTE and some configu-
ration files. A new memory card will have the folder KEY that contain Robox licence and the folder /f@ with the last
version of RTE. The RTE binary file can also be downloaded from Robox website.

Note: Don’t delete the folder KEY from the memory card. I contain the licence.

After the installation of RDE, RCE and Icmap, we need to copy in the installation directory, usually Robox, the license
in order to compile programs. The license is provided by Robox.

Note: Microsoft c++ redistributable 2010 and 2015 x86 must be installed on your computer

1.1. Documentation 5

Robox Motion control Documentation, Release 1.0.0

Fig. 3: One task execution

6 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 4: More than one task

1.1. Documentation 7

Robox Motion control Documentation, Release 1.0.0

Note: RDE is the IDE of Robox, RCE is R3 and OB compiler, ICmap is the AGV’s maps compiler. ICmap can be
installed only if we use AGV, otherwise is not needed.

Fig. 5: RDE main windows

New RTE project

RDE like others IDEs (Eclipse, Atom, Visual studio code, etc.) use workspaces. One workspace may contain more
than one project. So before creating a new RTE project, a workspace have to be created.

In the menu bar, the workspace menu, allow to open, create and manage workspaces, also to access the predefined
examples. We can create as many workspaces as we want. Usually one project or machine program have its own
workspace.

The New RDE workspace and RTE project animation illustrate step by step how:

• Create a new space

• Create a connection to a controller

• Create a new project

• Choose the compiler

Fig. 6: New RDE workspace and RTE project
RTE project was created, and a connection. The connection should have the same ip address of the controller.

The following animation illustrate how a R3 program and an Object block can be created in an RTE project.

Note: Remember to save the workspace after any modification: Workspace –> Save workspace

8 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 7: R3 program and Object block (OB)

Tasks and Rules are R3 programs. When the keyword $TASK n where n is the task number, e.g. $TASK 1, the R3
program become a task. If the keyword $rule is used the R3 program become a RULE.

An RTE system files can have different folders. This demo use the default folders:

• f@ : RTE binary file

• fa : R3 programs and configuration files

• ob : Oject block compiled files

Fig. 8: Memory card default folders

Fig. 9: Memory card default folders tree

Note: An RTE project can have until eight R3 programs as TASKS and one R3 program as RULE. This doesn’t mean

1.1. Documentation 9

Robox Motion control Documentation, Release 1.0.0

we have one rule.

Demo used in this chapter

RDE basics

Flash image

After the creation of a new project, the memory card should be prepared with the right folders and files, Memory card
default folders tree. The RTE binary file can be downloaded from Robox website. Project files and programs can be
created from RDE.

Mainly it is enough to have on the memory card the hardware configuration file and the ip address file, in order
to connect to the controller from RDE. Anyway, when a new project is created is more conveniente to create the
project image from RDE and copy them to the memory card.

Connect the memory card to your computer using a flash card reader if using RP1 or a microSd card reader if using
RP2. And copy the generated folders (the image) to the memory card following the procedure showed in the animation.

The following animation show the procedure to prepare the first project image.

Fig. 10: First setup
Prepare the flash card the first time

The image is generated in any folder that you want, but it is better to create a folder in the working workspace called
CF_image and generate the image files in it. When the image files are generated, they will be copied into the memory
card.

Note: Don’t copy the or replace the /f@ folder. The f@ should contain the necessary files.

When the memory card contains all the necessary files and folders, any modification to the project can be downloaded
to the controller directly from RDE, and the controller is ready to communicate with RDE. Plug the ethernet cable on
the second ethernet port of e.g. RP1.

Tools

We already see how to create a new project, create a connection to the controller, and copy the main files and folders
to the memory card. In order to see if the controller can communicate with the computer we can use the windows
command ping or linux command nmap.

Our goal is to use RDE, so we will see how to use RDE tools in order to connect to the controller. RDE have different
tools: console (like linux terminal or windows prompt), oscillosope, graphic panels, etc.

The scope of this section is to show how to use tools to monitor variables. Don’t care now about R3 syntax, even if the
code should be clear if you know another programming language. Keep in mind that we will monitor some variables
which value is changing.

Connect the controller to the computer via an ehternet cable, turn it on (give power) and be sure that your computer have
the same ip class address. If the controller have e.g. 192.168.1.130 ip address the computer should have 192.168.1.xxx
where xxx is a number different from the ip address of the controller, in this case 130.

10 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 11: Flash image files

1.1. Documentation 11

Robox Motion control Documentation, Release 1.0.0

Console

The following animation show how we can create a console, connect it to the controller and use some commands.

Notice that the connection name is the project, not the connection to controller. It is conveniente to connect the project
to controller connection, and all other tools to the project.

Fig. 12: create a console

The project can be compiled and download to the controller, using the button Make project or Rebuild
project. You can select wich folders you want to download to the controller. Usually we download the mofied
folders.

Note: Don’t select f@ folder when building the project.

Custom console commands can be created using Robox X-script language.

Variable monitor

In the following animation we will modify the R3 program in order to create a one second timer, then build and
download the project to the controller. We will create also a variable monitor to show the value of the timer variable.

Fig. 13: Modify program and download to controller. Create a variable monitor.

Graphic panel

The next modification we will create a graphic panel with one button and one textbox. The button will be related to a
variable or register to stop or run the timer. The textbox is used to show the value of the timer.

Fig. 14: graphic panel
Create a graphic panel (HMI)

Oscilloscope

In order to illustare the use of an oscilloscope we modify the R3 program in order to generate a sinusoidal wave.

3D graphic panel

Create a 3D graphic panel, where we will show a box that move along the y axis in an alternate motion.

3D graphic panels can be cutomized using X-script language, see X-script chapter for more informations.

12 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 15: Oscilloscope
Create a sinusoidal wave and monitor it in an oscillosope.

Fig. 16: 3D graphic panel

Important folders and files

In the memory card are present a lot of files and folders. Some of them are important to know what they are, others
no. In the documentation of RDE you can find an explanation of those files.

RDE will generate automaticcaly files in the default folders. So for now don’t care too much about them. First
confidence with the use of RDE should be gained, then advanced concepts will be invetigated.

Tools

From the workspace we can access the tools provided by RDE. Different kinds of tools are provided to debug and
monitor the software: panels, oscilloscope, variable monitors and command shell, etc. Some of them we have already
see.

In the following image we can see some tool created and present in the workspace. We can notice that this workspace
have two projects.

Connections

In order to connect a project or a tool to a controller, we need to create a connection. If we connect to the controller via
ethernet cable, as we already see previously, we need to create a tcp/ip connection with the ip address of the controller.

If we connect to the controller via serial cable, we need to create a serial connection.

Command shell

The shell allow to interact with the controller via shell commands and device commands. The most important com-
mands for debugging are sysinfo to get information about the controller, als to get the list of alarms in the stack
and mreport to get a report about the activities of the controller, the result is a log menu that can be exported to text
file..

Fig. 17: Files in flash. Auto generated files

1.1. Documentation 13

Robox Motion control Documentation, Release 1.0.0

Fig. 18: Objects available in a workspace
Some predefined objects are already created by Robox e.g. axis powerset graphic panel.

14 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 19: Some tools in the workspace

1.1. Documentation 15

Robox Motion control Documentation, Release 1.0.0

Fig. 20: Tcp connection

16 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 21: New object. Serial connection

1.1. Documentation 17

Robox Motion control Documentation, Release 1.0.0

We can make shortcuts to the most used commands. Click the mouse right button and go to set quick commands
in order to define shortcuts. A list of defined shortcuts is available from the function keys [F1-F12] and from the
action menu accessible from the mouse right click.

Fig. 22: Command shell: Quick commands

There are different types of commands, some types to manage variables others to manage the flash card other the
device. A list of commands is available in the official documentation.

We will see some of the most used commands divided by category. Several commands can be used alone or with
options. More than one command can be sent together by using the \& operator. Take a look at Command shell:
Quick commands in order to see the usage and syntax of some commands.

Variable management

• DV: Display variable value. The dv command allow us to monitor the value of variables e.g. dv nvr 1 display
the value of the register nvr(1).

• SV: Set variable value

• FV: Force variable value

• RV: Release variable value

Device management

• adv Resets the device alarm

• sysinfo Get information on connected device.

• mreport It displays the events log. the option -a display all reports. Other options are available in order to
filter the report.

• als It displays the contents of the alarms stack.

• swreset Request for software reset.

18 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

• uar Opens a file present in the flash card and refreshes the assignments to R, NVR, RR, NVRR, SR and NVSR
with the current values but leaves the comment lines unchanged.

Flash management

• fsave Save file from flash.

• fview view a file from the flash.

Example of use

• nvr 1 5 Set the value of nvr register 1 to 5, equivalent to sv nvr 1 5

• nvr 4.2 1 Set the bit 2 of nvr register 4 to 1

• d inp_w 100

• d inp 1

• d nvr 1

• d nvr 2.3

• d nvr 1 5 Displays 5 registers starting from 1

• d nvr 1 5 -v Displays 5 registers starting from 1 with their index

• f_inp 300 Force logical state of input 300

• uar /fb/lostreg.stp Save the value of register in the file lostreg.stp

Bus configuration

Physical IO (Input-Ouput) are mapped into the memory of the controller, in the so called process image. IO are
updated at the begining or the end of the periodic task (Rule). The cycle time is too short, about 5 ms, so it have no
importance when it is update. So let’s suppose that the controller read the physical input pin_w at the begining of the
periodic task and write the to the designated memory inp_w, and read of the output memory out_w and write to the
physical output pout_w.

In the program the process image or logical IO are used, rarely physical IO are used in a program. IO memory area
is an index area represented by 2 big arrays of words (16 bits), one for inputs inp_w and one for outputs out_w. In
IEC 61131-3 these are represented as %IW and %QW. IO memory can be accessed also by single bit, using the 2 arrays
inp(bit_index) and out(bit_index).

The indexes begin from 1 NOT from 0, e.g. input word 2 is inp_w(2) and the first bit of the word is inp_w(2).0
the correspond to inp(17).

Axioline

Robox controllers support natively Phoenix Axioline bus.

In the following animation we will add to the harware configuration one Phoenix Digital IO module (8 Digital inputs
and 8 Digital outputs) and one analog module (2 analog inputs and 2 analog outputs) as shown in the previous pictures..

In the animation we choose automatic memory addressing, we can find the addresses in the flash file rhw.cfg :

1.1. Documentation 19

Robox Motion control Documentation, Release 1.0.0

Fig. 23: RP1 and Phoenix Axioline IO
20 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 24: RP1 and Phoenix Axioline one digital IO module and one analog IO module

1.1. Documentation 21

Robox Motion control Documentation, Release 1.0.0

Fig. 25: Axioline configuration. Add one Pheonix Digital IO module and one analog IO module

IW 36 SLOT 3.01 ; AXL_F_DI8_1_DO8_1_1H (First 8 input group)
IW 37 SLOT 4.01 ; AXL_F_AI2_AO2_1H (Analog input channel 1)
IW 38 SLOT 4.02 ; AXL_F_AI2_AO2_1H (Analog input channel 2)

OW 36 SLOT 3.01 ; AXL_F_DI8_1_DO8_1_1H (First 8 output group)
OW 37 SLOT 4.01 ; AXL_F_AI2_AO2_1H (Analog output channel 1)
OW 38 SLOT 4.02 ; AXL_F_AI2_AO2_1H (Analog output channel 2)

The first physical input can be read on the address inp_w(36).0 and the the first digital output can be written to
out_w(36).0. We have also 2 analog inputs and 2 analog outputs. We can read the value of the first analog input
from the address inp_w(37) e.g. rawTemperatura = inp_w(37) and write to the second analog output in
this way e.g. out_w(38) = rawSpeed.

Ethercat

In this section we show how to create an Ethercat bus configuration file. We will use Wago Ethercat modules.

Fig. 26: Ethercat configuration. Wago ethercat modules, one 16DI and one 16DO

After the creation of the Ethercat configuration with a bus coupler and 2 IO modules, we need to configure the input-
output variables as shown:

Fig. 27: Ethercat gloval variable configuration

In this configuration we will assign manually IO addresses. We have one 16 digital input Wago module and one 16
digital output wago module. Even if each module is 16 bits, wago map each 8 bit on a word. So will have one 2 words
for each module. As the animation, we assign the first 8 inputs of the module the address 300 and the first 8 outputs
the address 300. Then we proceed incrementally. So the first 16DI module will be mapped to inp_w(300) and
inp_w(301).

CanOpen

Profibus

1.1.3 R3

Overview

R3 is similar to IEC 61131-3 ST language (Strucuted Text). It is used by Robox controllers. The syntax is simlar to
C, Pascal and basic languages.

Note: R3 language is NOT case sensitive.

22 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 28: Global variable example1.1. Documentation 23

Robox Motion control Documentation, Release 1.0.0

Program structure

An R3 program can be a task or a rule file. The code of a program can be written in one file or divided in several files
that can be included in R3 program using the keyword $include followed by the file name. Usually the file to be
included have .i3 extension.

The rule case is a little bit different, and will discussed later. A task is like a C prrogram, is executed from the begining
until the end. If no infinite loop is used, once the task reach the end, its execution is terminated. Usually a task have to
be executed cyclically, for this reason after the initialisation, the code is written inside an infinite loop i.e. ‘‘ while(1)
{ code }‘‘. R3 provide __MAIN_LOOP__ block that is equivalent to the infinite loop.

$include filetobeincluded.i3

; variable declaration

; initialization

__MAIN_LOOP__
; this is an infinite loop
; write your code here

END_MAIN_LOOP

Basic syntax

Variables and types

Fundamental types :

bool

I8
I16
I32
INT

U8
U16
U32

float
real

char
string

Some strucutre or complex types:

STRUCT
STRUCTP
TIMER
COUNTER

Some example of motion related types

24 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

STRU_MVTO
STRU_CAM

Here some example on how to use. The syntax id the same for all types type varname.

INT intVar
REAL position

INT vv[10]
REAL vr [5][2]

STRING description
STIRNG desc[5]

intVar = 10
position = 20.0

We can access the single be of a varible by using the dot operator, e.g. we want to access bit 5 of the varible pippo:

int pippo = 0x20
pippo.5 = 1 ; assign value 1 to bit 5 of the varible pippo

Constants

Usually we create constants, to avoid to use numbers, to make our program more readable. Constants are created suing
the keyword LIT, e.g. LIT MONDAY 1, LIT TUESDAY 2. As a convention constants are written in capital letters.

R3 doesn’t have the enumeration type, pay attention when constructing enumeration with constants to keep different
numerical values to different costants of the same category, e.g. MONDAY and SUNDAY should have different numerical
values, they can’t have both of them the value 1. If they have the same value, this will be a programming error, not a
syntax error.

Operators

; assignment
=

;
+ - * /

;
AND OR NOT XOR

;
> < =
<> >= <=

; bitwise
R_AND R_NOT R_OR R_XOR

; string concatanation
#

1.1. Documentation 25

Robox Motion control Documentation, Release 1.0.0

Control flow

As any programming language, usual control flow statements are :

if (contition)
;

elseif (condition)
;

else
;

end_if

_if (condition)
; one statement

_else
; one statement

for(initialisation, conidtion , update)
;

end_for

for(i=0, i < 10, i=i+1)
; code

end_for

for(,1,)
; infinite loop

end_for

select (var)
case 1
; code
break

case 2
; code
break

default
; code

end_select

while(condition)
;

end_while

while (i < 10)
i=i+1

end_while

while (1)
; inifite loop

end_while

26 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

do
;

end_do_while(condition)

__main_loop__
; infinite loop

end_main_loop

I32 cond_val (condition, I32 val_if_true, I32 val_if_false)

i = cond_val (b=2, 10, 20)

; this equivalent to
if (b=2)
i = 10

else
i = 20

end_if

In the documention and in the example shown before can be found their syntax.

ALIAS

An alias is a more undertandable or more clear alternative to a varible or to a function. In R3 can be used to give a
name to a register or to an input or a memory. The keyword LIT is used, like for constants. For example in an R3 we
can write r(3) = 100, it is correct be the meaning of r(3) is not clear.

If we writte:

LTI Position r(3)
position = 100

it will be clear that the varible we are dealing with, is a position. We can give different alias to the same register.

Let’s suppose that r(10) is a mask where every bit represent something. We can use the dot operator to access the
singular bits. e.g. r(10).4. Of course it will more clear if we give a name to number 4.

LIT DriveStatusWord r(10)
LIT DRIVE_READY 0
LIT DRIVE_RUN 1
LIT DRIVE_ALARM 4

if (DriveStatusWord.DRIVE_ALARM)
; do something

end_if

Data structure

Data strucutres could be Arrays, Sruct and OBs. In R3 documentation we can find predefined structures and OB that
main are related to motion control.

We can also define our own structures and OBs.

1.1. Documentation 27

Robox Motion control Documentation, Release 1.0.0

Modular programming

Tasks, functions and Object blocks can be used to make the program modular and esay to debug.

RDE allow us to create maximum 9 R3 programs (files) divided in one Rule program (one file) and eight taks (8 files).
It allow also to create other files that can be included in tasks and rule files. We can write our functions, variable
delcation, IO mapping, registers aliases (using LIT) in different files, usually with extension .i3 and include them in
the disered task using the keyword $include filename.i3

Scope rules

As any programming language variables have a scope. They could be local or global variables. Registers, IOs and
predefined variables are global, and they can be written and read from any task. Also variables that are aliases to
registers and IO are global.

Variables could be local to a function or local to a task.

$task 1

int b ; local to this task, it can't be seen by other tasks
int c ; local to this task
int i ; local to task

__MAIN_LOOP__

; code

val =2 ; it will give compilation error. this is not delcared in the task

END_MAIN_LOOP

function

int val ; local to funtion
int i ; local to funtion, it is not the same as the one delcared in the TASK

b = 2 ; this is delcared in the task, it can be used also in the funtion.

; code
end_fun

Variables could be also public and can be shared between tasks. If a variable is delared as public in task 1, and
extern in task 2, it can be written and read in task 1, and only read in task 2.

$task 1
public int val ; public variable. can be read an written by this task. I can be

→˓only read in other tasks where the keyword extern is used.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

$task 2
extern int val ; external variable can only be read

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

$task 3
int val ; this is local to task 3

28 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

I you want to read and write a variable delcared as extern, the keyword $WRITE_ON_EXTERN should be add to
the task where the variable is delared as extern

$task 1
public int val ; public variable. can be read an written by this task. I can be
→˓only read in other tasks where the keyword extern is used.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

$task 2

$WRITE_ON_EXTERN ; if this keyword is present all varibles delared as extern become
→˓also writable by this task
extern int val ; external variable can only be read

Example

The purpose of the following code is to illustrate the syntax of R3. The whole code have no meaning by itself.

$TASK 2

$include incfile.i3

; this is a comment

; STRUCT definition
STRUCT stPoint

REAL x
REAL y

REAL z
INT n

END_STRUCT

; variable of type stPoint
stPoint myPoint1
stPoint myPoint2

int a ; 32 bit signed variable
a=2 ; variable initilization

int n

real time ; 8 bytes floating point

real tim

bool c ; bool variable

; LIT keyword used as alias to registers, inputs and outputs
LIT sinf rr(1)
LIT inpValve inp_w(200)

; LIT can be used also to define constants
lit THIS_IS_CONSTANT 2

time = tfb

(continues on next page)

1.1. Documentation 29

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

tim =tfb

LIT operation r(10)
operation = 0

; array of 5 int
int arrBuffer[5]

; infinite loop
__MAIN_LOOP__

if (tfb > time +1)
_if (r(2).0)

r(1) = r(1) + 1
time = tfb

end_if

if (tfb > tim +0.005)
sinf = sin(2*3.14/2 * tim)
tim = tfb

end_if

; Object block use
obdemoist.b =true
c= obdemoist.readonlyvar

; call a function
call thisIsFunction()

if (a > 10)
n = 100

elseif (a < 5 AND a > 0)
n = 10

else
n = -1

end_if

int i
for (i = 0, i < 22, i=i+2)

n = n + i
if (n > 10)

continue
elseif (n= 100)

break
end_if

end_for

i =0
while (i < 10)

i=i+1
n= i +2
_if (n = 10) ; this _if have only one instruction that belong to it

break
end_while

real distance
(continues on next page)

30 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

distance = getDistance(myPoint1, myPoint2)

END_MAIN_LOOP

function thisIsFunction()
; string concatenation
sr(1) = "it's" # " eight"

end_fun

; funtion
function testFunc()

select (operation)
case 0

; do something
break

case 1
; do somethingelse
break

default
; do somethingelseelse
operation = 0

endselect

end_fun

; this function return a real value
function real getDistance(stPoint p1, stPoint p2)

; euclidean distance
return sqrt(pow((p2.x -p1.x),2) + pow((p2.y -p1.y),2) + pow((p2.z -p1.z),2)

→˓)
end_fun

Basic syntax of R3 language

Predefined variables

A full list of the predefined variables can be found in Documentaion –> Programming languages –> R3 language
–> Predefined variables

Input-Output

Registers

Regisers are arrays of prealloced memories. The dimension can be defined by the user, Register dimension.

Register dimension show different types of registers and their allocation in memory.

1.1. Documentation 31

Robox Motion control Documentation, Release 1.0.0

Fig. 29: IO predefined variables

Fig. 30: Registers predefined variables

Axis parameters

The following variables are arrays of 32 elements. The array index correspond to the axis index. For example cp(2)
is the current position of Axis number 2.

• kbit2unit Bit-unit conversion factor.

• cp Axis current position [unit]

• cv Axis current velocity [unit/s]

• ca Axis current acceleration [unit/s^2]

• ip Axis ideal position [unit]

• iv Axis ideal velocity [unit/s]

• ia Axis ideal acceleration [unit/s^2]

• sref speed reference.

• pro_gai position loop proportional gain

• kff feed forward factor

• epos position error when the position loops are closed with a predefined formula

• fr feed rate. This variable contains a factor ranges from 0 to 1. If a min value of 0 is programmed, the variable
fr will be set = 0. If a value >1 is programmed, the variable fr will be set = 1.

32 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 31: Register dimension

1.1. Documentation 33

Robox Motion control Documentation, Release 1.0.0

1.1.4 R3 demos

All demos: of this chapter can be found in one workspace and one project.

Demo 1: Analog input

Le’t connect an analog temperature sensor to the analog module of Pheonix. Check RDE chapter for information about
how to configure IOs. The temperature sensor have linear relationship between the tension (V) and the temperature.
The analog input have an internal 16 bit ADC (Analog to Digital Converter). The data type of the converted value is
16 bit (15bit + sign) Tension value is mapped from [0V;10V] to [0,30000]. Usually the max value 7FFF is more
than 10V.

The linear relationship between the signal and its phycical value is represented as:

𝑚 = (𝑦1−𝑦0)
(𝑥1−𝑥0)

𝑦 = 𝑚(𝑥− 𝑥0) + 𝑦0

In our case the y will be the temperature and the x will be the digitalized value. To build a linear relationship we need
two point (𝑥0, 𝑦0) and (𝑥1, 𝑦1). From the datasheet of the temperatura sensor we obtain the curve of the sensor.

Let’s suppose that:

• 0V (AI=0) is 0∘𝐶

• 10V (AI=30000) is 100∘𝐶

The following is the code implemennted in R3:

$TASK 1

; Analog sensor connected to first analog channel of pheonix module
LIT temperaturaAI inp_w(36) ; Temperatura analog input

; temperature values are saved in non volatile real regisers
LIT temp0 nvrr(1) ; temperature
LIT temp1 nvrr(2) ; temperature
; scaling values. saved in non volatile integer registers
LIT temp0_ai nvr(3) ; analog value corresponding to temp0 degree
LIT temp1_ai nvr(4) ; analog value corresponding to temp1 degree

temp0 = 0.0
temp1=100.0

temp0_ai = 0
temp1_ai = 30000

real temperature = 0.0

__main_loop__

; scaling equation, linear relationship between temperature and analog input
; consult the datasheet of the analog module

; 0V --> 0x00 (0)
; 10V --> 0x7530 (30000)

; Temperatura sensor
; Range -45degree (1V) ~ 125 degree (10V)

(continues on next page)

34 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 32: From datasheet of Pheonix AI module

1.1. Documentation 35

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

temperature = ((temp1-temp0) / (temp1_ai - temp0_ai)) * (temperaturaAI -
→˓temp0_ai) + temp0

; short task, we add a waiting instruction
dwell(0.2) ; wait for 0.2 seconds

end_main_loop

Demo 2 : Using functions

In this section will show how to use functions. We will modify the temperature example, we create TASK2. First we
create a function that represent a linear relationship between two variables linearmap(). Then we will call it in the
main loop. In this example we will map the analog input into a register in order to be able to simulate it, as we don’t
have the phycial sensor.

Note: remmeber to execute task2 form task1, by adding the instruction mt_en(2)

Note: We can force the value of inp_w in order to debug the program.

The following is the code implemennted in R3:

$TASK 2

; Analog sensor connected to first analog channel of pheonix module
LIT temperatureAI r(1) ; Temperatura analog input

; temperature values are saved in non volatile real regisers
LIT temp0 nvrr(1) ; temperature
LIT temp1 nvrr(2) ; temperature
; scaling values. saved in non volatile integer registers
LIT temp0_ai nvr(3) ; analog value corresponding to temp0 degree
LIT temp1_ai nvr(4) ; analog value corresponding to temp1 degree

temp0 = 0.0
temp1=100.0

temp0_ai = 0
temp1_ai = 30000

LIT temperature rr(1)

__main_loop__

temperature = maplinear(temperatureAI, temp0_ai, temp0, temp1_ai, temp1)
dwell(0.2)

end_main_loop

function real maplinear(int x, int x0, real y0, int x1, real y1)
real m = (y1-y0)/(x1-x0)
return m*(x - x0) + y0

end_fun

36 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Demo 3 : Cylinder

In this demo we will illustrate the use of functions, and include files.

Remember that the code of included files, at compilation time are merged with the main file. It means the keyword
$include filename.i3 is replaced by its content.

Fig. 33: Hydraulic double acting cyclinder, 3 state electrovalve

Demo 4: State machine

1.1.5 Object block

Object block is a C++ class, it is another option to write program in RDE. An OB is the equivalent of a Funtion Block
(FB) in the IEC 61131-3, this mean that an OB have a static memory that is conserved between different calls of the
OB. It is dieerent from the concept of a Function (FC).

An OB is composed from a header file (.h) and a source file (.cpp) like like any C++ class, in addition to these
classic files, RDE use the obs file to describe the interface of the Object block. In the obs file, public fields
and methods are defined.

OB

Create a new OB

The following animation, Object block creation, show step by step how to create and deploy a new OB. The main
steps are shown and explained also in the static images below.

Fig. 34: Object block creation
Create new Object block and an instance of it

In rte project, right click and add new Object block. A folder have to be selected for the compiled file, usually /ob. If
the folder ob dosen’t exist add it in the flash memory before creating the Oject Block, see section files and folders.

Insert the name of th OB class and the description. The description will be shown in the description colounm in the
RTE project. Usually this field is brief. Select the Flash folder, usually /ob, where the compiled OB (.obb) will be
saved. The check box Automatic generation should checked, otherwise not all files will be generated.

In the following image the result of the creation of an OB is shown:

After the creation of a new object block we will obtain 4 files:

1.1. Documentation 37

Robox Motion control Documentation, Release 1.0.0

Fig. 35: new Object block
Create new Object block. right click in the tab program of an RTE project

Fig. 36: Write the OB name, select the folder of destination and check at least the first option

38 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 37: Object block structure files

• obs : object block interface file

• h : C++ header

• cpp : C++ source

• obb : Object block binary file (compiled file), that can found in the /ob folder in the Flash files.

Fig. Obs, Header and Source show the auto generated files. As we can see the header and the source files have the
structure of a classic C++ class with class name, class constructor and destructor.

Deploy an OB

As any object oreinted language, a class have to be instantiated before using it. In the configuration tab of an RTE
project, right click Object block and add OB Class or OB Instance. A class could have more than one instance. An OB
is similar to an FB (Function block) in PLC programming.

OB basics

As any class of an object oriented language, an Object block have methods (functions) and fields (variables).
Public methods and fields that can be accessed from an R3 program should be written in the obs file respectively in
the methods and properties blocks.

Properties could be only of simple C++ types: BOOL, I8, I16, I32, U8, U16, U32, INT, FLOAT, REAL, CHAR, could
not be of struct type.

Note: Properties name should be lower case, capital letters generates compilation errors.

The source file where the code is implemented is written in the block implementation. An OB can be implemented
in more than on source file.

When an OB inherit from another OB, and we want to ovveride a property or a method the keyword virtual is used
in the declaration.

Using an OB in R3

Suppose we have the class obCylinder and its instance cylinder_right. Let’s suppose the OB have the meth-
ods opencyl() and closecyl(), and 2 readonly properties cyl_opened and cyl_closed and 2 not readonly
properties cmd_open and cmd_close. We can call in R3 the methods as we call them in C++ using the dot op-
erator: cylinder_right.opencyl(). We can access properties using also the dot operator for reading or writ-
ing: bool cyl_closed = cylinder_right.cyl_closed or if(cylinder_right.cyl_opened)
or cylinder_right.cmd_open= TRUE and cylinder_right.cmd_close = FALSE.

1.1. Documentation 39

Robox Motion control Documentation, Release 1.0.0

Fig. 38: Obs
Auto-generated OBS file

40 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 39: Header
Auto-generated C++ header

1.1. Documentation 41

Robox Motion control Documentation, Release 1.0.0

Fig. 40: Source
Auto-generated C++ source

42 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 41: OB Class or OB Instance
Add a class than add an instance. In the figure we can see 2 classes : rc_mgv and rc_motorwheel, and one instance of the

first class and two instances of the second one

If we defined a structure in the obs file we can use it to define a variable of that type (stucture type) in R3.

OB Predefined example

In menu file, workspace, specials, predefined examples, we can find the example OB: Use and OB implementation.
This example provide the source code an OB, rc_belt, that handle a belt, a rule and task1 implementation.

The Class rc_belt is an OB that can be find in the Object Block library, this OB inherit from the class
rc_belt_base. The example use another OB from the standard library, rc_axis, without providing its source
code.

Refer to the official Object Block documentation for more informations about OB classes.

In the obs file of rc_belt, Obs example file, we can see the interface of the Class, how to use another class by
importing it, define inputs and outputs and some methods.

Note: Input and outputs deffer only with the keyword ro. When an property is declared as read only behave like an
output only like the output of a Function block, otherwise behave like an input-output like an inputoutput of a Function
block.

The OB is implemented in two C++ source files. In this OB, 2 classes were defined. The class rc_belt, that inherit
from rc_belt_base, and the class RCBelt. The OB main class is the one written in the OB_FACTORY block

OB_FACTORY(rc_belt)
OB_INSTANCE(rc_belt)

OB_ENDFACTORY

1.1. Documentation 43

Robox Motion control Documentation, Release 1.0.0

Fig. 42: Object block instance parameters.
In the column Value we can initialize the variables. To keep the program easy to read, it is better to initialize OB properties in

R3. Note that properties declared as ro (read-only) are not shown here.

44 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 43: Obs example file
OB example that use another OB from the standard library. The code in implemented in 2 source files. Example taken from the

predefined examples of RDE.

1.1. Documentation 45

Robox Motion control Documentation, Release 1.0.0

Fig. 44: OB interface
OB: Use and OB implementation, predefined example

1.1.6 OB demo

Cylinder

Fig. 45: Hydraulic double acting cyclinder, 3 state electrovalve

1.1.7 X-script

X-script can be used to extend RDE, create shell commands, write AGV scripts, make animation in the 3d graphic
panel. User interfaces can be designed in Qt designer then deloyed with x-script application.

X-script have some limited object oriented abilities. When it is compiled it generate a byte code, than can be executed
by the XVM (X-script virtual machine).

Its syntax is similar to C, pascal and basic. The official documentation provide quite fair explanation of the basic
syntax.

The VMI documentation can be found in every tool that can use the X-script language:

46 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 46: user interface
User interface example designed with Qt, and implemented in X-script, in order to configure the parameter of a third party drive.

• Command Shell

• 3D graphic panel

• AgvManager

• etc.

Basic syntax

Listing 1: Fundamental data types

int, uint, long ; 32 bit
int16, uint16, short, ushort ; 16 bit

char, uchar, byte, bool ; 8 bit

real ; 64 bit
float ; 32 bit

string ; strings are terminated wit /0 like C

handle (uint)
color (uint)

timeout (real)

1.1. Documentation 47

Robox Motion control Documentation, Release 1.0.0

Fig. 47: X-script VMI documentation
Documentation –> Programming languages – > X/script language –> VMI documentation

48 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Listing 2: Control flow

if(condition)
else
end or endif

while(condition)
end or endwhile

do
end condition

for(init, cond, update)
endfor

select(var)
case 2
;
break

default
;
break

end or endselect

Functions

A function is declared using the keyword code and end or endcode :

code functionName()
; function body

end

code function2() : int
int res
; function body
return res

end

code func3(uint par, uint i = 0)
; function body

end

If a function is implemented in a file after another function that use it, the keyword forward should be used.
It is like in C a function prototype should be provided.

forward func2(int)

code func1()
func2(10)

end

code func2(int c)
; function body

endcode

1.1. Documentation 49

Robox Motion control Documentation, Release 1.0.0

Objects

X-scripts objects are like Classes, in order to use them they should be instanciated. An object is declared using the
keyword object and endobject or end. First an object interface, header should be provided, then the implemen-
tation. Can be done in the same file. An object have also a contructor method.

object obClass

code constructor()

int var

code method1()
code method2(int):bool

endobject

code obClass.contructor()
; constructor implementation code

end

code obclass.method1()
; method implementation

end

Objects are used as classed, can be instanciated. Properties and methods can be accessed via the dot operator.

3D graphic panel

To create a 3D graphic panel in the workspace right click then: New object –> editors –> 3D graphic panel.

3D graphic panels can be customized using X-script language. An example can be found in Workspace –> specials
–> predefined examples – > R3/OB:rc_rod_crank Demo and in Workspace –> specials –> predefined examples
– > OB: Element location

Shell commands file

To create new shell commands in the workspace right click then: New object –> editors –> commands file editor. A
file with extension .shc will be created. Shell commands are implemented using X-script language.

Every shell command should have at least the execute() and the help() function.

code execute (CMDLINE @cl): BOOL
; TODO: code for execution of command
return true

end

code help (): BOOL
; TODO: code to request help, like print() o invokeHelp()
return true

end

A user interface ui can be desinged in Qt designer and used in the command shell.

50 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 48: Customization of a 3D graphic panel with X-script

Fig. 49: Example of Shell commands implemented in X-script

1.1. Documentation 51

Robox Motion control Documentation, Release 1.0.0

AGV

AGV’s plant logic, dispatching, are implemented in X-script language. The script is compiled by AgvManager, not by
RDE. Consult the documentation of AGV for more information.

Fig. 50: AGV plant logic in implemented in X-script

1.1.8 X-script 3D Graphic panel

VMI API

The complete projects can be found in the predefined exmples in RDE. We will use Element location and Rod crank
predefined examples.

Element location

Date command cource code

; ===
; ROBOX SpA
; Via Sempione 82, Castelletto Ticino, ITALY
; +390331922086
; http://www.robox.it
; ---
; Script.......:
; Description..: 3D graphic panel customization
; ===

; How to use:
; set here the name of rc_elementlocation instance, then save and start the panel
; Note: you must use rc_elementlocation V 1.3.0 or above

$DEFINE EL_NAME "LOV:buffer_belt"

(continues on next page)

52 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 51: 3D graphic panel VMI documentations
Documentation –> RDE documention –> 3D graphic panel –> VMI documention

(continued from previous page)

; ---

addVar(varInt, "elem_nr", EL_NAME + ".NUMBER_OF_ELEMENTS")
addVar(varReal, "el_dim", EL_NAME + ".DISTANCE2END")
addVar(varReal, "passo", EL_NAME + ".VIEW_SCALE")
addVar(varInt, "orig_sin", EL_NAME + ".ORIG_SIN_MARK")
addVar(varBool, "log_inp", EL_NAME + ".LOG_INP")

int elem_nr
real el_dim
real el_offset
int i
int sts
int orig_sin
bool log_inp

restartMonitor ()

sleep(1000)

elem_nr = getInt("elem_nr")
el_dim = getReal("el_dim") * getReal("passo")

(continues on next page)

1.1. Documentation 53

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

el_offset = el_dim * 0.5
orig_sin = getInt("orig_sin")

for (i=0, i<=elem_nr, i=i+1)
addItem(itemBox, "elem-"+i, "visible="+EL_NAME+".VIEW_PRES["+i+"];posX="+EL_

→˓NAME+".VIEW_POS["+i+"];width=0;color=#FFC800;height=50;length=100;offsetX="+(-el_
→˓offset)+";offsetZ=25")

addVar(varReal, "dim-"+i, EL_NAME+".VIEW_DIM["+i+"]")
addVar(varInt, "sts-"+i, EL_NAME+".VIEW_STS["+i+"]")

end

setReal("piano.width",el_dim + 200)
for (i=1, i<=16, i=i+1)

setReal("end-"+i+".posX",el_offset)
end
for (i=1, i<=10, i=i+1)

setReal("start-"+i+".posX",-el_offset)
end

restartMonitor ()

while (not shouldEnd ())

log_inp = getBool("log_inp")

for (i=0,i<=elem_nr,i=i+1)
setReal("elem-"+i+".width",getReal("dim-"+i))
sts = getInt("sts-"+i)
if (sts == 0)

setString("elem-"+i+".color", "#1F1F1F")
else

if (not (sts & 0x01000000))
setString("elem-"+i+".color", "#7FFF7F")
if (sts & orig_sin)

log_inp = false
end

else
if (sts & 0xFF)

setString("elem-"+i+".color", "#FF0000")
else

setString("elem-"+i+".color", "#FFC800")
end

end
end

end
setBool("start-7.visible", not log_inp)
setBool("start-10.visible", log_inp)

end

54 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Rod crank

Date command cource code

; ===
; ROBOX SpA
; Via Sempione 82, Castelletto Ticino, ITALY
; +390331922086
; http://www.robox.it
; ---
; Script.......:
; Description..: 3D graphic panel customization
; ===

; How to use:
; set here the name of rc_rod_crank OB instance, then save and start the panel

$define rc_sys "biellaman"
;$define rc_sys "ROD_CRANK_INSTANCE_NAME"

; ---

; TODO: initialization here
addVar(varReal, "LB", rc_sys + ".rod_len")
addVar(varReal, "RM", rc_sys + ".crank_len")
addVar(varReal, "DA", rc_sys + ".h_pivot")
addVar(varReal, "alfa", rc_sys + ".panel_alfa")
addVar(varReal, "pos_x", rc_sys + ".pos_x")
addVar(varReal, "pos_off", rc_sys + ".pos_offset")
addVar(varReal, "ang_off", rc_sys + ".ang_offset")
addVar(varBool, "rad_angle", rc_sys + ".rad_angle")
addVar(varBool, "reverse_dir", rc_sys + ".reverse_dir")

real rodX
real rodY
real rodAng
real RM
real LB
real DA
real alfa
real beta ; rod rotation angle an Y axis. Positive sign clockwise
→˓under RM top
real LBx
real LBy
real pos_x
real pos_off
real ang_off
real alfa_print
bool rad_angle
bool reverse_dir

; call restartMonitor () to dynamically resynchronize the data monitor
restartMonitor ()

sleep(1000)

LB = getReal("LB")
RM = getReal("RM")

(continues on next page)

1.1. Documentation 55

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

DA = getReal("DA")
pos_off = getReal("pos_off")
ang_off = getReal("ang_off")
rad_angle = getBool("rad_angle")
reverse_dir = getBool("reverse_dir")

; reverse system
if(reverse_dir)

pos_off = -pos_off
endif

; dimensioni biella manovella
setReal("crank.LineHeight",RM-50) ; -50 to be coherent with drawn
setReal("rod.Width",LB)

setReal("testo.PosX",1.5*RM)
setReal("testo.PosZ",1.5*RM)

setReal("testo2.PosX",1.5*RM)
setReal("testo2.PosZ",1.2*RM)

while (not shouldEnd ())
; TODO: periodic handling

pos_x = getReal("pos_x")
alfa = getReal("alfa")

if(not rad_angle)
alfa_print = alfa ; BEFORE alpha conversion
alfa = degToRad(alfa + ang_off)

else
alfa_print = radToDeg(mod(alfa, 2*pi))
alfa = alfa + ang_off

endif

; reverse system
if(reverse_dir)

alfa = pi + alfa
endif

LBx = pos_x - pos_off - RM*sin(alfa)
LBy = RM*cos(alfa) - DA

beta = atan2(LBy, LBx)
setString("testo.text", strformat("alpha: %.2f deg", alfa_print))
setString("testo2.text", strformat("pos: %.2f mm" ,pos_x))

rodX = RM*sin(alfa) + 0.5*LB*cos(beta)
rodY = RM*cos(alfa) - 0.5*LB*sin(beta)
rodAng = radToDeg(beta)

setReal("crank.beltPos",radToDeg(alfa))
setReal("rod.posX",rodX)
setReal("rod.posZ",rodY)
setReal("rod.posB",rodAng)

setReal("elbow.posX", RM*sin(alfa))
(continues on next page)

56 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

setReal("elbow.posZ", RM*cos(alfa))

setReal("tool.posX",pos_x - pos_off)
setReal("tool.posZ",DA)

sleep (100) ; 10hz loop
end

; TODO: termination here

1.1.9 X-script Command shell

VMI API

Shell commnands are written in X-script language.

In this chapter we will see 2 commands that use the BCC communication protocol of Robox, in order to communicate
with the controller. The 2 commands can be found in the installation folder of RDE.

ALS command

ALS command source code

; ===
; ROBOX SpA
; Via Sempione 82, Castelletto Ticino, ITALY
; +390331922086
; http://www.robox.it
; ---
; Script.......: ALS
; Description..: Display alarms stack content
; ===

code help (): bool
print ("ALS [-E] [pos]", textBold)
if (languageCode() == "it")

print ("Visualizza contenuto stack allarmi.", textItalic)
print ("Parametri:")
print (" -E, informazioni estese")
print (" pos, indice dello stack (1-N)")

else
print ("Display alarms stack content.", textItalic)
print ("Parameters:")
print (" -E, extended information")
print (" pos, stack index (1-N)")

end
return true

end

; ---

code printStackPosition (bccmsg @asw)
string buf
buf = "als("+ strFormat("%2d",asw.u32(0)) +") "

(continues on next page)

1.1. Documentation 57

Robox Motion control Documentation, Release 1.0.0

Fig. 52: Command shell VMI documentation
Documentation –> RDE documention –> Command shell –> VMI documention58 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 53: Example of Shell commands implemented in X-script

(continued from previous page)

buf = buf + " ac=" + strFormat("%-4d",asw.u16(4))
if (asw.u16(6) != 0)

buf = buf + " ax=" + strFormat("%-2d",asw.u16(6))
else

buf = buf + " "
end
buf = buf + strFormat(" '%s'", asw.str(40))
print(buf)

end

; ---

code execute (cmdline @cl): bool
int pos = 0
bool extInfo = false
string alsId
string alsTitle
bccmsg cmd, asw, msg
bccmsglist msgs

; Imposta task veloce
setFastSchedule(true)

; Titolo
print (tr ("us=Alarms stack contents^it=Contenuto stack allarmi"), textBold)

; Verifica opzioni
while (cl.isOption ())

if (strLower (cl.asString()) == "e")
extInfo = true
cl.next ()
continue

end

printError (tr ("us=Wrong option -^it=Opzione errata -") + cl.
→˓asString ())

return false
end

; Verifica parametro posizione (opZ)
if (cl.isInteger ())

pos = cl.asInt ()
if (pos < 1)

printError (tr("us=Invalid stack index^it=Indice dello stack
→˓non valido"))

return false
end
cl.next ()

end

; Ignora parametri extra
cl.ignoreExtra ()

(continues on next page)

1.1. Documentation 59

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

; Richiesta singola posizione
if (pos)

; Compose and send request command
cmd.msgcode = AS|520
cmd.msglen = 8
cmd.u32(0) = 0 ; flags
cmd.u32(4) = pos ; posizione
if (not command (@cmd, @asw))

printnack (@asw)
return false

end
printStackPosition(@asw)
return true

end

; Richiesta stack completo allarmi
cmd.msgcode = AS|521
cmd.msglen = 4
cmd.u32(0) = 0 ; flags
msgs.clear ()
if (not downloadSequence (@cmd, @asw, @msgs))

printnack (@asw)
return false

end

; Composizione titolo
alsId = strFormat ("0x%08x", asw.u32 (8))
if (languageCode () == "it")

alsTitle = "Visualizzazione di " + msgs.count() + " su "+ asw.u32 (4)
→˓+ " allarmi"

if (extInfo)
alsTitle += ", con ID "+ alsId

end
else

alsTitle = "Displaying " + msgs.count () + " of " + asw.u32 (4) + "
→˓alarms"

if (extInfo)
alsTitle += ", with ID " + alsId

end
end

; Stampa contenuto dello stack
if (msgs.count () > 0)

print (alsTitle)
if (msgs.first(@msg))

do
printStackPosition(@msg)

end msgs.next (@msg)
end

; Stampa stack vuoto
else

if (extInfo)
print (alsTitle)

end
print (tr ("us=No alarm in stack^it=Nessun allarme in stack"))

end
(continues on next page)

60 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

return true
end

DATE command

Date command cource code

; ===
; ROBOX SpA
; Via Sempione 82, Castelletto Ticino, ITALY
; +390331922086
; http://www.robox.it
; ---
; Script.......: date
; Description..: Show (or set) date for connected device
; ===

code help (): bool
print ("DATE [dd mm yy]", textBold);
print ("DATE -LSET", textBold);
if (languageCode() == "it")

print ("Visualizza (o imposta) la data per il dispositivo.",
→˓textItalic)

print ("Parametri:")
print (" -LSET, imposta data usando la data locale")
print (" dd, giorno (1-31)")
print (" mm, mese (1-12)")
print (" yy, anno (2003-2100)")

else
print ("Display (or set) date for the device.", textItalic)
print ("Parameters:")
print (" -LSET, set date using local date")
print (" dd, day (1-31)")
print (" mm, month (1-12)")
print (" yy, year (2003-2100)")

end
print ("")
print ("DATE -L", textBold);
if (languageCode() == "it")

print ("Visualizza data locale.", textItalic)
else

print ("Display local date.", textItalic)
end
return true

end

; ---

code showDate (): bool

; Titolo
print (tr ("us=Current date&^it=Data corrente"), textBold)

(continues on next page)

1.1. Documentation 61

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

; Compose command message
bccmsg cmd, asw
cmd.msgcode = AS|503
if (not command (@cmd, @asw))

printnack (@asw)
return false

end

; Show result
int d, m, y
d = asw.u8 (3)
m = asw.u8 (4)
y = asw.u16 (5)
print (dayName (d, m, y) + ", " + dateToString (d, m, y))
return true;

end

; ---

code showLocalDate (): bool
int d, m, y
print (tr ("us=Current date (local)^it=Data corrente (locale)"), textBold)

; print (dateToString (day (), month (), year ()))
d = day ()
m = month ()
y = year ()
print (dayName (d, m, y) + ", " + dateToString (d, m, y))
return true;

end

; ---

code setDate (cmdline @cl): bool
int d, m, y
bccmsg cmd, asw

; Read and check first parameter (DAY)
if (cl.isInteger ())

d = cl.asInt ()
if (d < 1 or d > 31)

printError (tr("us=Invalid day (1-31)^it=Giorno non valido (1-
→˓31)"))

return false
end
cl.next ()

else
printError (tr("us=Expected a day number^it=Atteso numero giorno "));
return false

end

; Read and check second parameter(MONTH)
if (cl.isInteger ())

m = cl.asInt ()
if (m < 1 or m > 12)

printerror (tr("us=Invalid month (1-12)^it=Mese non valido (1-
→˓12)"))

return false
(continues on next page)

62 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

end
cl.next ()

else
printerror (tr("us=Expected a month number^it=Atteso numero mese"));
return false

end

; Read and check third parameter(YEAR)
if (cl.isInteger ())

y = cl.asInt ()
if (y < 2003 or y > 2100)

printerror (tr("us=Invalid year (2003-2100)^it=Anno non
→˓valido (2003-2100)"))

return false
end
cl.next ()

else
printerror (tr("us=Expected a year number^it=Atteso numero anno"))
return false

end
cl.ignoreExtra ()

; Check date validity
if (not isDateValid (d, m, y))

printerror (tr("us=Invalid date^it=Data non valida"))
return false

end

; Prepare and send command
cmd.msgcode = AS|504
cmd.msglen = 8
cmd.u8(0) = 0
cmd.u8(1) = 0
cmd.u8(2) = 0
cmd.u8(3) = byte(d)
cmd.u8(4) = byte(m)
cmd.u16(5)= word(y)
cmd.u8(7) = byte(0x0038)

; Send message
if (not command (@cmd, @asw))

printnack (@asw)
return false;

end
return true

end

; ---

code setDateFromLocal (): bool
int d, m, y
bccmsg cmd, asw

; Init variables
d = day ();
m = month ();
y = year ();

(continues on next page)

1.1. Documentation 63

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

; Prepare and send command
cmd.msgcode = AS|504
cmd.msglen = 8
cmd.u8(0) = 0
cmd.u8(1) = 0
cmd.u8(2) = 0
cmd.u8(3) = byte(d)
cmd.u8(4) = byte(m)
cmd.u16(5)= word(y)
cmd.u8(7) = byte(0x0038)

; Send message
if (not command (@cmd, @asw))

printnack (@asw)
return false;

end
return true

end

; ---

code execute (cmdline @cl): bool
bool result
bool showLocal = false
bool setFromLocal = false

; Imposta task veloce
setFastSchedule(true)

; Check options
while (cl.isOption ())

if (strLower (cl.asString()) == "l")
showLocal = true
cl.next ()
continue

end
if (strLower (cl.asString()) == "lset")

setFromLocal = true
cl.next ()
continue

end
printError (tr("us=Wrong option -^it=Opzione errata -") + cl.

→˓asString())
return false

end

; Check and launch operation
if (showLocal)

cl.ignoreExtra ()
result = showLocalDate ()

else
if (setFromLocal)

cl.ignoreExtra ()
result = setDateFromLocal ()

else
if (cl.isEol ())

(continues on next page)

64 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

result = showDate ()
else

result = setDate (cl)
end

end
end

return result;
end

Using XForm and Qt designer

The User interface is designed in Qt designer. The extension of the file is .ui and it is an xml file.

Fig. 54: Qt designer

This script use the Class XForm in order to handle the Qt user interface and send configuration parameters to a
third party drive.

1.1.10 RDT

1.1.11 Modbus

1.1.12 Basics

RTE scheduler

RTE is a realtime preemtive operating system. The principles of RTE are quite simple. In a one core CPU, an
operating system give the illusion to the user that it is executing programs, tasks or processes in parallel (in the same

1.1. Documentation 65

Robox Motion control Documentation, Release 1.0.0

time). Even on a multicore computer, we have this illusion. Supposed our machine have a 4 core cpu, and we are
using a webbrowser, a keyboard, a mouse, music player, a word processor, mail client, the OS is executing processes
that the user ignore, etc. at the same time, 4 core are not enough to do the job.

Simply RTE allow execution of one motion task called RULE and 8 general purpose tasks. The rule have high priority,
and it is a periodic task, that execute always at predefined time si, sampling interval. And tasks are executed in time
sharing, for example 10 instruction from task1, then 10 from task2, and so on until task 8, then back agian to the
following 10 instructions of task 1 and so on. This inifinite loop or iteration is interrpted at fixed time si by RTE in
order to execute the RULE.

Fig. 55: RTE scheduler. The execution of task depend on the sampling time. But RULEs are always executed
periodically with a period equal to si‘.

Note: The sampling time can be read from the predefined variable si. The period frequency can be set in RTE
configuration.

RULEs are a more complex concept. There are more then one rule, in RTE they are all executed together in sequence
in the same sampling time. If RTE can’t execute them in one period, may be there are a lot of instruction and si is
too short e.g. 0.2ms, RTE give an alarm and you have to increase si. Typical value si = 5ms on RP1.

RTE can execute until 32 RULEs plus other 2 special ones called RULE_PROLOGUE and RULE_EPILOGUE. The
sequence can be assinged in R3 program. Toegether with RULEs RTE execute other compenents. But for our purpose,
we care only about RULEs.

You can immagine RULEs as different functions that RTE call in the sequence that you tell him. There is only one R3
program with the keyword $RULES where rules and other helper funtions are written.

Note: The rule file can have up to 1000 rules, but RTE can execute maximum 32 of them in the same sampling time.

Complete overview on RTE multitasking:

In this chapter we will create a simple demo in order to show how we can configure an axis (drive + motor) and
simulate it.

Axis configuration

We will create three projects in one workspace, in order to illustrate different axis configurations:

• Ethercat

• CanOpen

• Analog reference

Each project reside in one folder in the workspace.

Every axis have a unique name and a unique index, that can be used in R3 programs.

66 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 56: RTE multitasking

Analog reference

Let’s suppose we have a motor drive with analog reference speed control, and and feedback position.

We configure 2 axis, The first axis speed refrence is assigned to a volatile real register rr(1) and the feedback
position to rr(11). Note that we check emulated field in order to be able to emulate the drives. With a real drive,
this field should be clear.

Ethercat

When controlling a drive via a bus, e.g. Ethercat, profinet, etc. we use PDO to control the drive.

Important input words via bus:

• Status word : A mask that contain the status of the drive e.g. running, alarm, etc.

• Actual position or Actual speed

Importnat output words:

• Control word : A mask with command to the drive e.g. enable, run, etc.

• target position or target speed.

The role of each bit in the status and control words depend on the drive configuration.

Robox drive: IMD

Robox Integrated Drive

1.1. Documentation 67

Robox Motion control Documentation, Release 1.0.0

Fig. 57: Priority

68 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 58: Rule execution

Fig. 59: Multiproject workspace

Fig. 60: Analog speed reference

1.1. Documentation 69

Robox Motion control Documentation, Release 1.0.0

Fig. 61: SEW Status and control word example of 2 different axis configuration.

Fig. 62: Robox IMD20: Ethercat

In order to congirure Robox IMD drives, you can use the predefined example.

CoolDrive

CoolDrive is a chinese drive with Ethercat bus. Download the software DriveStarter and the xml bus definition from
their website.

CanOpen

Powerset

We can imagine the powerset as a logical power, for safety purpose, of a set of drives. For example we are
controlling a 6-axis anthropomorphic robot and a 3-axis cartesian robot. We can create 2 power sets to group the 6
axis of the first and another one to group the 3-axis of the second one. Of course we can create 9 powersets, one for
each axis. Suppose that the 3-axis robot have a problem and need to stop, it is logical to stop all 3 axis.

In the powerset configuration we select the axis, which power is handedled by the powerset the we call ps. If axis are
controlled via a bus e.g. Canopen over Ethercat, as feedback we choose CANopen(CAN402). Usually even if drives
use fieldbus, saftey circuit still exist. Suppose we have an emergency circuit, that is connected to the controller which
state can be read in r(101).0. In the powerset feedback we add also that register.

If the feedback signals are HIGH, the powerset can be energized by the signal that set in the tab requests POWR_RQ,
power request. In our case, we choose r(100).0. Imagine the powerset as a safety realy, if safety condition are met
feedback = true, the relay contacts can be closed under a request from POWR_RQ.

You can find a ready to use graphic panel to monitor the powerset. Later we will see how to use it.

To enable power of different axis, a chain of power in the power set have to be enabled, like a safety chain. There are
some predefined variables and funtions that manage axis power. We will some of them in order of chain hierarchy,
top-down view:

70 Chapter 1. Robox S.p.A.

http://www.tsino-dynatron.com

Robox Motion control Documentation, Release 1.0.0

Fig. 63: Robox IMD20: Configurator

Fig. 64: Powerset

1.1. Documentation 71

Robox Motion control Documentation, Release 1.0.0

• power_allowed : Flag that enables all the PowerSets

• ps_power_enable(POWER_SET ps, I32 flag) : Enables the PowerSet ps if flag == 1.

• ps_channel_enable(POWER_SET ps, I32 enableMask): Enables the drives of the PowerSet ps,
where the drive relativ bit is 1. e.g. enableMask=0x05 only axis(1) and axis(3) are enabled.

POWER_SET is a STRUCT to define a powerset. for example the field eba is a flag related to system alram, if it is
true, it means there are no alram that forbide the power to be energized.

Consult the documentation in RDE RTE firmware –> power handling and related arguments where you
can find also a state machine of power handling.

RULEs

We prepare the base project, that let us to complie with errors. Remember that in order to compile a task, at least one
instrution should be present.

Rules are similar to function that handle motion instruction. We can use different rules to manage an axis state
machine, or we can use one rule where we can write the state machine directly. One RULE can handle up to 32 axis.
In the rule body, the required axis are selected. The main strucure of a rule is:

RULE number
axes n[,n,n,...,n]

ref
; optional block of instructions containing the position loop closure algorithm.

end_ref

motion
if(first_time())

; solo la prima volta
endif
; block of instruction containing the algorithms to build the ideal trajectory

end_motion

aux
; optional block containing auxiliary instructions

end_aux

END_RULE

If the rule is active, it is executed one time every period of the RULEs execution, one time every si. The ref and
aux blocks are optional. So for now we don’t discuss them. Remember the rule number is unique.

Let’s write a code to move an axis in jog mode.

rule R_JOG
; axis 1
axes(1)

motion
jog = bJogPos - bJogNeg ;

; MVA_JOG2(I32 ax, I32 direct, REAl speed, REAL accel, REAL decel)
res = MVA_JOG2(axis_x, jog, 10, 100, 100, 1, 1, 0)
end_motion

end_rule

72 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 65: Powerset enabling chain

1.1. Documentation 73

Robox Motion control Documentation, Release 1.0.0

Fig. 66: Powerset enabling chain

Motion instruction can be found in R3 documentation. Check also the predefined variables in R3, related to motion
control. This rule when active, handle the motion of axis 1 only, axis(1). When jog = 0 the axis doesn’t move,
when jog=1 it move in positive direction when it is jog=-1 it move in negative direction.

We can use different RULEs to assign different behavior to the axis. For example one Rule for jog motion, one for
homing, one for positioning, etc.

We have two special rules, RULE_PROLOGUE and RULE_EPILOGUE. RULE_PROLOGUE is executed by RTE before
the motion block of all active rules and RULE_EPILOGUE is executed after them.

rule_init() is a special function executed by RTE at the first execution to initialize the rule, e.g assign
RULE_PROLOGUE.

Listing 3: rule_init()

function rule_init()
; if needed we enable the execution of the
; rule_prologue and rule_epilogue in the initialization rule
rule_prologue(func_prologue)
rule_epilogue (func_epilogue)
; do something

end_fun

function func_prologue
; do something

end_fun

(continues on next page)

74 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

function func_epilogue
; do something

end_fun

First let’s define some rule to manage an axis, then define a state machine to assign rules depending on the requirments.
We begin to define some constants, to assign a name to rules:

Listing 4: RULE number definition

LIT R_POWER_MISSING 1
LIT R_FAST_STOP 2

LIT R_IDLE 3
LIT R_HOMING 4
LIT R_JOG 5
LIT R_POSITIONING 6
LIT R_AUTO 7

We will present some of the rules code, the complete code is found in the attached demo:.

Listing 5: Missing power rule

rule R_POWER_MISSING
axes(1,2) ; only axis 1 and 2 is managed by this rule
motion

res = mva_open_loop(ax_x)
res = mva_open_loop(ax_y)
end_motion

end_rule

We can write also the axis name in the function axis()

axis(axis_x, axis_y)

The motion funtion mva_open_loop(axis_number), assign the actual position to the ideal position
ip(axis_number) = cp (axis_number). This can be done when power is missing, to avoid any gap be-
tween the ideal position and the acual one, when the axis is powered and avoid any sudden motion.

Let’s suppose we want to stop the axis in a controlled way when emergency circuit is opened, or to some grave error
happen. So we have to ramp down the motion of the axis, ramp down the speed to zero, quickly and avoid sudden
stop.

Listing 6: Fast stop, speed ramp down to 0

rule R_FAST_STOP
axes(axis_x, axis_y)
motion

iv(axis_x) = ramp(iv(axis_x), 0, max_acc(1)) ; ramp down ideal speed to
→˓0

iv(axis_y) = ramp(iv(axis_y), 0, max_acc(1))
end_motion

end_rule

Notice that we write only the ideal velocity or ideal position. Here we supposed that the drive close the velocity loop,
and the deafult control loop of RTE is executed. More about this topic when we examine the ref block.

Now we write the code of the posiiotn rule. The rule have to move the axis to a defined poistion:

1.1. Documentation 75

Robox Motion control Documentation, Release 1.0.0

Listing 7: Rule move to a target position

rule R_POSITIONING
axes(axis_x)
motion
ip(axis_x) = mv_to (MovResult, 1, lTarget, lSpeed, lAcc)
if (rise(MovResult = M_REACHED and similar(ip(1),lTarget,1)))

; do something
end_if

end_motion
end_rule

We already see how we can defined RULEs to do different things with axis, it is a simple concept. It is like writing
functions to divide the tasks to do in a machine. We see also some motion instructions and how to used predefined
variables related to motion control.

More motion control instructions can be found in the documention of R3 language.

Standard position loop algorithm

A rule contain the ref block that is optional, where control algorithms can be implemented. If the block is omitted,
RTE will execute its standard, preimplemented control loop. In this case the controller will close the position loop,
give a speed reference to the drive and the drive will close the speed loop and eventually other internal loops.

Listing 8: RTE standard closure of the proportional position loop with
speed feed forward

; n is the axis index
epos(n) = p_ip(n,ipp_idx) - cp(n)
sref(n) = epos(n) * pro_gai(n) + kff(n) * iv(n)

RULEs execution

In our example we will enable one rule at one time. But in a multiaxis more complex machine we need to enable a
group of axis, and maybe different rules at the same time. There are instruction to assign to RTE the execution order
of the enabled order, in every sampling time.

The predefined variable rule_length give the execution time of what we call RULE. Remember that we don’t mean
a single rule, but the set of funtions, OB, etc. related to motion. So the time return by thi variable is the execution, let’s
say of everything exluding normal tasks. rule_length can’t be bigger then si. Remember that in one period, si,
RULES and some slices of tasks have to be executed. The rule frequency is set by the function rule_freq (I32
freq) or in RTE project configuration. The variable si is read-only. If the execution time is not enough, the rule
frequency have to be increased.

Rules can be enabled when need, from a taks or from another rules. We can enable Rules, using differ-
ent R3 functions. First we need to declare a variable of type STRU_GROR it is a STRUC which contain an
array of I32 idx[32]. This strucure is used with the instructions group(STRU_GROR rulegroup) or
order(STRU_GROR rulegroup), and the meaning of each element depend on the instruction used.

RTE rule executer use a predefined variable rc(n), which is an array of 32 elements. The value of rc(n) is a rule
number. The standard order of rule execution is from index 1 until the last one. The order of execution can be changed
using the instrction order().

Let’s make some example. First let’s execute the rules in rc as are predefined in RTE, begining from the first one,
so we don’t use the instruction order(). In the follwing example, we define the strucure rule_group, then we

76 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 67: RTE standard closure of the proportional position loop with speed feed forward

Fig. 68: Transduser count to physical unit convertion

1.1. Documentation 77

Robox Motion control Documentation, Release 1.0.0

assign the number of rule to be activated. The index of idx is the order of execution of the rules, that correspend to
the index of rc.

Listing 9: Excution with normal order.

STRU_GROR rule_group

rule_group.idx[1] = 5 ; rule number , rc(1)=5
rule_group.idx[2] = 2 ; rule number
rule_group.idx[3] = 1 ; rule number
rule_group.idx[4] = 100 ; rule number

group(rule_group)

Now let’ change the execution order of the rules. Let’ execute in sequence rc(4), rc(1), rc (3) then rc(2).
The execution order will be RULE 100, RULE 5, RULE 1 then RULE 2.

Listing 10: Execution user defined order

STRU_GROR rule_order
STRU_GROR rule_group

rule_order.idx[1] = 4 ; 4 is rc index
rule_order.idx[2] = 1 ; rc index
rule_order.idx[3] = 3 ; rc index
rule_order.idx[4] = 2 ; rc index

group(rule_group)

rule_group.idx[1] = 5 ; 5 is rule number , 1 is rc index. rc(1)=5
rule_group.idx[2] = 2 ; rule number
rule_group.idx[3] = 1 ; rule number
rule_group.idx[4] = 100 ; rule number

group(rule_group)

In summary, with the instruction group we assing rules to rc, e.g. rule_group.idx[6] = 23 equivalent ot
rc(6) = 23. And with the instruction order we change the order of exection of the rc, in other word we remap
the indexes of rc.

We can assign -1 to rule_order.idx[n], in order to telle the executer that n-1 is the last rc to be executed.

Listing 11: Execution user defined order

STRU_GROR rule_order
STRU_GROR rule_group

rule_order.idx[1] = 4 ; 4 is rc index
rule_order.idx[2] = 1 ; rc index
rule_order.idx[3] = 3 ; rc index
rule_order.idx[4] = -1 ;

Finally we assign rules to the ruel executer using directly the variable rc.

Listing 12: Execution user defined order

rc(1) = 2
rc(2) = 35

(continues on next page)

78 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

(continued from previous page)

rc(3) = 9
rc(4) = 1
rc(5) = 5
rc(6) = 7

Remember that task execution can interrupted, in order to execute another task or rule. This mean that, if the task
is interrupted by the rules before the controller execute rc(4), only rc(1), rc(2), rc(3) will be assinged to the rule
executor. And the others will be assigned in the follwong sampling time. For this reason is better to use the instruction
group, in this way all rules defined in STRU_GROR will executed.

Power

In another chapter we will examine a complete example, where we implement a state machine that enable rules
depending on the machine requirment. In this section we will see some R3 instructions in order to deal with power
handling.

In the initialization function, in TASK1, we need to enable the powerset and single axis:

ps_power_enable(ps,true) ; enable powerset ps

; I32 ps_channel_enable (POWER_SET psname, I32 enableMask)
ps_channel_enable(ps,0x3) ; enable axis 1 and 2 in the powerset ps

We can invetigate the status of the powerset, using the instruction I32 ps_status (POWER_SET psname) that
return:

0x00000001 (B0) at least 1 drive in fault
0x00000002 (B1) Powered
0x00000004 (B2) at least 1 drive enabled
0x00000008 (B3) all the powerSet drives are enabled
0x00000010 (B4) delayed (if required) state of the feedback
0x00000020 (B5) reserved
0x00000040 (B6) counting running in case of delay because of axis alarm causing the
→˓power drop (power_off_delay_on_alarm)
0x00000080 (B7) counting running in case of delay because of feedback lack (power_off_
→˓delay_on_no_feedback)
0x00000100 (B8) actual feedback state (not delayed)
0x00000200 (B9) the feedbacks for all the drives are present
0x00000400 (B10) the feedbacks of all the drives for which the enable command has
→˓been activated, are present (instruction ps_channel_enable)
B11-B32 Reserved

For example we want to see

if (ps_status(ps) r_and 0x8)
; all the powerSet drives are enabled

end_if

systemPowered = ((ps_status(ps) r_and 0x12) = 0x12) ; x012= 0x10 OR 0x02

powerGoingDown = (ps_status(ps) r_and 0xC0) ; C0 = 0x40 OR 0x80

Summary

TODO

1.1. Documentation 79

Robox Motion control Documentation, Release 1.0.0

1.1.13 Base project - State machine

State machine

Homing

R3 Motion instructions

Note: Predefined examples on the use of R3 motion instructions are available in RDE

1.1.14 Control algorithm

Overview

todo

Algorithm

Ref

REF
; algorithm

END_REF

80 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

1.1. Documentation 81

Robox Motion control Documentation, Release 1.0.0

1.1.15 Object block

Overview

todo

1.1.16 PLCopen

IEC 61131

82 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

1.1.17 Drives

Overview

todo

1.1.18 RPE - Robox path executor

RPE is an extension of RTE. In order to use it, the binary file rpe.bin should be copied in /f@. The binary file of
the platform you are using can be downloaded from Robox website.

RPE is used to develop robotic applications, using different models of robots: cartesian, anthropomorphus, parallel,
etc.

Fig. 69: Joint-cartesian models

The path to be executed can be defned through ISO language (G-code) with one of these extensions .mpf, .iso,
.nc, or in a path class file with extension .pth.

Axis group

In the following animation we show how to create a set of axes. we don’t show how to add all the parameters of the
axes. Consult the predefined example RPE: pick and place.

1.1. Documentation 83

http://delivery.robox.it/firmware/rpe/
http://www.robox.it/en-US/index.php

Robox Motion control Documentation, Release 1.0.0

Fig. 70: Path defined in a file using G-code

84 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Fig. 71: Path defnied using Path Library

Fig. 72: Set of axes

1.1. Documentation 85

Robox Motion control Documentation, Release 1.0.0

Library points and paths

We will see how to define a square using library POINT and PATH defintion.

Listing 13: Library points and paths basic structure

AXIS_GROUP axis_group_name

POINT point_name
;

END_POINT

PATH path_name

END_PATH

We define the 4 vertices of the square in the space with coordinate (x,y,z,a,b,c). Using the path block we connect
points via straight lines. These points and paths belong to the axis group defined in the file.

AXES_GROUP arm_robot

;---
; library Points
;---
;POINT P[0] x rr(10) y rr(11)
POINT P[0] x 600 y -
→˓200 z 200 a 10 b 180 c 0
POINT P[1] x 1000 y -200 z 200 a
→˓10 b 180 c 0
POINT P[2] x 1000 y 200 z
→˓200 a 10 b 180 c 0
POINT P[3] x 600 y 200 z
→˓200 a 10 b 180 c 0

;---
; Path description
;---
PATH trajecto300 ACC_T 600

LINEAR P[1] TRC 1 100
LINEAR P[2] TRC 1 100
LINEAR P[3] TRC 1 100
LINEAR P[0] TRC 1 100

END_PATH

The name of the points in the file .pth must be the same of the variable of type POINT_L declared in the task. Also
the path name must coincide with the task varaible of type PATH.

Example files describing library points and paths :

• Square

• Points

• Profile

86 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

G-code

G-code is a standardized programming language used in CNC machines like lathe, mill, etc. G-code can written
manually for simple manufacturing or generated automatically by CAD softwares for complex machining.

The most used code are G and M. G are preparatory commands usally for motion, and M are miscellaneous functions.

G00 Rapid positioning
G01 Linear interpolation
G02 Circular interpolation, clockwise
G03 Circular interpolation, counterclockwise
G21 programming in mm

M02 End of program
M03 Spindle on (clockwise rotation)
M04 Spindle on (counterclockwise rotation)
M09 Coolant off

In RPE documentation, you can find a list of code supported by RPE.

using in RPE . todo

G-code examples :

• Path

• Logo

• cr028

• iso_prog

Operative mode

RPE structures

RPE functions

1.1.19 RPE : Robot

Overview

todo

1.1.20 RPE : ISO

Overview

todo

Generate G-code from inkscape

inkscape

1.1. Documentation 87

Robox Motion control Documentation, Release 1.0.0

88 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

1.1. Documentation 89

Robox Motion control Documentation, Release 1.0.0

G-code from CAD

Autocad

G-code libraries

C++, C#

1.1.21 Serial communication

RS232

RS485

1.1.22 UDP sockets

Sockets are used to communicate between different processes on the same machine or on different ones. There are
different types of sockets. In this chapter we will deal with Datagram sockets. Datagram sockets use UDP User
Datagram Protocol.

CLient-Server architecture is usually used between 2 applications in order exchange information. Typically a client
make a request for information to a server. A client have to know about the exitence and the address of the server. The
server typically answer to some request, and doesn’t need to know about the existence the client prior to the connection
being established.

For our purpose, in order to establish a communication we need a hostname and a port. A hostname could be
a string or an ip address. A port is where a server listens for client’s calls. It is recommended, when using Robox
products, to use port nember outside the range [8000, 8999] to avoid conflicts with Robox’s implementations.

R3: UDP Client/server

In RDE predefined examples you can find the demo R3: UDP client/server, it is a workspace with two RTE projects,
one for server and one for client. In order to test this demo you need 2 Robox controllers.

Fig. 73: RDE predefined example: R3 UDP Client/server

This is a modified version of the sample, it is configured to work with two RP1. The first with address
192.168.1.130 act as server, the second RP1 act as client and have the address 192.168.1.131.

Each UDP datagram is charecterized by a length, the length of a datagram is send along with the data.

UDP server

In the server code we will use the following R3 functions:

• str_to_ipaddr(ipstring, ipnum) : convert an ip address string to it’s hexadecimal equivalent. e.g.
192.168.1.130 will be 0xC0A80182

• udp_open_server(server_port, server_address) : open a server with assigned port and ad-
dress, and return a handle of the socket.

90 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

• udp_recv_from(sockethandle, buffer, buff_size, remote_port????,
client_address)

• udp_send_to (sockethandle, buff, buff_size, remote_port, client_address)

The buffer to be send and received can be a STRING, an array or a struct. If it is a struct the first member
should be an U32 that represents the message identifier, its value is fixed by the client which sent the request through
the function udp_send_notify(). The remaining members are user defined, e.g. :

STRUCT_P buff_send
U32 msgId ; message identifier
I32 comando
I32 reg_start
I32 reg_num

END_STRUCT_P

The server in this example, have to send registers value to a client. It receive a command, udp_recv_from, that
represent the register type to be sent. Once the command received, if the the comand is know, the server build a buffer
with the data of the requested registers and send them to the client, udp_send_to.

First a command buffer is built:

STRUCT_P buff_send
U32 msgId
I32 comando ; command, register type
I32 reg_start ; starting index of the register
I32 reg_num ; how many registers (number of repetitions)

END_STRUCT_P

Codification of register types:

LIT REQ_R 1
LIT REQ_RR 2
LIT REQ_NVR 3
LIT REQ_NVRR 4

Then a buffer to be sent to the client is constructed:

STRUCT_P buff_recv
I32 msgId
I32 comando
I32 reg_start
I32 reg_num
REAL regs[30]

END_STRUCT_P

A server is opened using the function udp_open_server(). Data are received udp_recv_from, then depending
on the command the buffer to be sent is filled with registers value, then sent to the client udp_send_to.

The complete code can be found in the attached project.

UDP client

In the client code we will use the following R3 functions:

• str_to_ipaddr(ipstring, ipnum) : convert an ip address string to it’s hexadecimal equivalent. e.g.
192.168.1.131 will be 0xC0A80183

1.1. Documentation 91

Robox Motion control Documentation, Release 1.0.0

• udp_open_client(server_port, server_address) : open a client communication, and return a
handle of the socket.

• UDP_SEND_NOTIFY(sockethandle, buff, buff_size) : sends a UDP message with notification

• UDP_RECV_NOTIFY(sockethandle, buff, buff_size, tmOutRx, tmOutTot) : receives a
UDP message (notified) from a previously selected station

The buffer can be a STRING, an array or a struct, see discussion in server section.

Appliaction Client

A client application will be developped that run on a personal computer. The UDP server code is that same we see
before and will be running on Robox controller e.g. RP1 with address 192.168.1.130 .

We will develop a client similar to the one of RDE predefined example in UDP client.

Python

C++

1.1.23 BCC communication protocol

1.1.24 Fundamental of automation

Overview

Basics of electronics

Sensors

Actuators

Controllers

Some Examples

1.1.25 External editors

In order to write a program, you can use the internal text editor provided by AgvManager and RDE. You can use also
external editors, the one you like. RDE support 3 external editors, this mean that in the configuration window, you can
choose to open the source code in an external editor. Notepad++, UltraEdit and ConTEXT are supported by RDE.

In the following section we will see how we make configuration files in order to highlight the syntax of Xscript, R3
language and object blocks.

Vim

File needed??

Copy the files in vimfile in the instalation directory in windows or in /usr/share/vim/vimfiles in linux

92 Chapter 1. Robox S.p.A.

Robox Motion control Documentation, Release 1.0.0

Syntax highlight

Function list

Notepad++

File needed and where to place them

Regular Expressions

Notepad++ regular expressions use the standard PCRE (Perl) syntax.

Syntax highlight

Function list

UltraEdit

File needed and where to place them

Regular Expressions

UltraEdit doesn’t use Unix style regex. There are some difference between the two styles. On the website of UltraEdit,
we can find the difference between them. In the wordfile of UltraEdit regex of UltraEdit should be used, it is different
from the one used in Notepad++.

Function list and syntax highlight

1.1.26 Version control

Note: Don’t modify this file in RDE-Doc. Update the file in personal notes, then copy it here.

Git

Basics

installation

Create new repository

git init
git config --global user.email "abdo_sarter@hotmail.com"
git config --global user.name "Abed"

1.1. Documentation 93

Robox Motion control Documentation, Release 1.0.0

Clone existing repository

Clone repository

git clone https://github.com/abedGNU/QtSnap7.git

Commit and versioning

Push and pull

Branching

Github pages

94 Chapter 1. Robox S.p.A.

	Robox S.p.A.
	Documentation

